
XPoints: Extension Interfaces for Multilayered
Applications

Mohamed Aly∗†, Anis Charfi∗, Sebastian Erdweg†, and Mira Mezini†
∗Applied Research, SAP AG

firstname.lastname@sap.com
†Software Technology Group, TU Darmstadt

lastname@informatik.tu-darmstadt.de

Abstract—Extensibility is a key requirement in modern soft-
ware applications. In the context of business applications it is
one of the major selection criteria from the customer perspective.
However, there are some challenges concerning the specification
and enforcement of extension interfaces. Extension interfaces
define the resources of the base applications that are allowed
to be extended, where and when the extension code will run,
and what resources of the base application an extension is
allowed to access. While concepts for such interfaces are still
a hot research topic for “traditional” software constructed using
a single programming language, they are completely missing
for complex systems consisting of several abstraction layers. In
addition, state-of-the-art approaches do not support providing
different extension interfaces for different stakeholders.

This paper attempts to fill this gap by introducing XPoints, an
approach and a language for specifying and enforcing extension
interfaces in multilayered applications. An extension interface in
XPoints defines the available extension points on the different
abstraction layers, controls the access and visibility of the
core application to the extension, and constrains the interplay
between extension points possibly from different abstraction
layers. Several extension interfaces can be overlaid over the
same core application, hence, enabling multiple extender views
to co-exist. Using an XPoints interface, a software provider can
automatically generate the extensibility code infrastructure to
provide the extension interface for the core application.

I. INTRODUCTION

Applications created for a large scale and a wide range of

customers such as business applications typically support a set

of standard business processes (e.g. sales order processing,

recruitment, etc.). Once an organization acquires such an

application, it has to customize and / or extend it to match

their specific needs. To achieve that, the software provider

has to design the software system to support variability
and extensibility. In the context of this paper, we focus

on extensibility. We refer to extensibility as the addition

of new functionalities to a software system to support new

requirements.

In most commercial business software systems, a software

provider does not give the source code of his applications to the

extension developers. However, the software provider gives the

extension developers access to artifacts like, e.g., API libraries,

frameworks, etc. along with documentation, tutorials, and other

materials to help an extension developer understand what

extension possibilities exist, and how to develop and integrate

extensions. The extensions are likely to interact with the core

software (e.g. access internal data resources) and can also affect

the main execution stream. In the case of business applications,

especially those that implement strict legal regulations (e.g. tax

calculations), extensibility has to be controlled in a rigorous

way. This is required for example to prevent undesirable

system behavior, data inconsistencies, and restrict access to

sensitive system information. In our previous works [1], [2],

we have outlined the challenges and requirements for enabling

extensibility for complex multilayered applications.

With respect to applications that require a controlled form

of extensibility, there are two perspectives that should be

considered: the software provider perspective and the extension

developer perspective. From the perspective of the software

provider, the application consists of several logical layers (e.g.

user interface (UI), business process, business object, database

etc.) containing many artifacts that can be made extensible for

the extension developer. However, in the context of complex

business applications, a software provider can have several

kinds of extension developer groups that can build extensions

for the software (e.g. internal development teams and external

partner companies). In all cases, the software provider has to

develop the necessary mechanisms to support extensibility such

that they express and support the following for the extension

developer.

• M1. Extension possibilities: the artifacts that are allowed

to be extended (e.g. UI forms, business process activities,

database tables, etc.).

• M2. Interdependencies: the relationships and constraints

that exist between these extensible artifacts.

• M3. Extension types: the types of extensions that are

allowed to be added to these artifacts (e.g. new methods,

attributes, UI elements, process artifacts, new columns in

a database table, etc.).

• M4. Extension method: the required coding elements and

how to extend these artifacts (e.g. inheritance, plug-ins

etc.).

• M5. Extension control: what underlying application re-

sources are available for the extension code (e.g. variables,

methods, etc.) as well as their access rights and usage

rules.

• M6. Extension integration and execution: when and where

will the extension code run.

2013 17th IEEE International Enterprise Distributed Object Computing Conference

1541-7719/13 $26.00 © 2013 IEEE

DOI 10.1109/EDOC.2013.34

237

2013 17th IEEE International Enterprise Distributed Object Computing Conference

1541-7719/13 $26.00 © 2013 IEEE

DOI 10.1109/EDOC.2013.34

237

An extension interface specifies the extensibility of a source

code artifact according to M1–M6 above. The extension

developer, on the other hand, has to understand the extension

interface of the system as well as its correct usage to

successfully develop and integrate his extension with the core

software.

Turning to object-oriented languages (e.g. Java), there are two

kinds of mechanisms related to the implementation of extension

interfaces: those geared towards enabling extensibility (e.g. in-

heritance and overriding), and those geared towards controlling

extensibility, e.g., modifiers that enable the developer of a class

to control what methods can be overridden or attributes that

can be accessed (c.f. [3]). In addition to these mechanisms, a

software provider can use advanced means (e.g. design patterns,

aspect-oriented programming, plug-in architectures, etc.) to

implement the required extension interface for the software

system.

In this paper we argue that the state-of-the-art approaches

have several limitations for realizing the extension interfaces

of complex multilayered applications. First, the technical

realization of the extension interface is coupled with the

functional code of the core software. Second, these conventional

means for controlling extensibility e.g., via Java modifiers,

are not expressive enough to enable fine-grained control on

what can be extended and how. Third, it is not possible

to provide different extension interfaces to different groups

of extension developers. Fourth, software applications are

nowadays extremely complex and involve several architectural

layers, demanding extension interfaces that cut across these

layers. There is also no support for such layer-crossing

extensions. Moreover, most approaches focus on language

or layer-specific extensibility mechanisms and thus do not

support the needs of multilayered applications. Last but not

least, to generate an extension interface of a complex software

with many extensibility constraints, a developer has to be

experienced with advanced development techniques.

The need and the challenges related to providing well-defined

extension interfaces for object-oriented systems are documented

in the literature [4], [5], [6], [7]. As a variation on this theme,

several proposals for aspect-based extension interfaces have

been published recently [8], [9], [10], [11]. However, as we

will elaborate in related work, these approaches do not address

the limitations mentioned above.

This paper contributes the following. First, we further elab-

orate on the limitations identified above through a simplified

example of a business application consisting of three layers

(Section II). Second, we introduce XPoints, an approach and

a language that enables the explicit and declarative expres-

sion and control of extensibility by well-defined extension

interfaces in multilayered applications, including cross-layer

dependencies. XPoints introduces an additional abstraction

layer, which separates the declaration of extension interfaces

from their realization (e.g., using design patterns or plug-ins).

By decoupling the extension interface from the application,

XPoints enables different extension interfaces for different

groups of extension developers. Moreover, a developer can

realize the extensibility interface of a software system by

automatically generating the extensibility supporting code from

an XPoints interface (Section III). Third, we report on one

particular instantiation of the approach in business applications

consisting of three layers: business object, UI, and business

process. We also report on an implementation of XPoints in

this context (Section IV). Finally, we discuss the advantages

and limitations of our approach (Section V) and compare our

approach with related work (Section VI).

II. PROBLEM STATEMENT

In this section, we first introduce an exemplary business

application that we use throughout the paper. Then, we analyze

the limitation of current works with respect to extensibility

and extension interfaces.

Example Business Application. We consider a business

application spanning three logical layers: the business process

layer, the business object layer, and the UI layer. A business

process defines the flow of activities that are required to achieve

a specific business objective such as creating a sales order,

ordering goods, or hiring a new employee. Business objects [12]

represent entities that are meaningful within a specific business

process like sales order, invoice, customer, and employee. A

business object encapsulates attributes, behaviour, constraints,

and relationships to other business objects. UIs provide means

to support the end users to accomplish the different activities

within a business process via a graphical interface.

Figure 1. Sales quotation business process

Figure 2. User interface for sales quotation creation

We introduce a simple sales quotation management module

as an example of multilayered business applications that spans

the three layers mentioned above. Figure 1 shows the sales

238238

quotation business process (layer 1) defined in the Business

Process Modeling Notation (BPMN) [13]. The process starts

upon receiving a request for a quotation for a specific set of

products from a customer. A sales representative analyzes the

request and creates a sales quotation and fills in the necessary

data. Then, she sends the quotation for approval to her manager.

The manager can either approve the quotation or request a

revision. Based on that decision, the sales representative may

have to edit the quotation and resubmit it for approval. At

the end, the approved sales quotation is sent to the inquiring

customer.

1 class SalesQuoteForm extends JPanel {
2 ...
3 private CustomerInfo customerInfo;
4 private double discount;
5 private SalesQuote salesQuote;
6 ...
7 public SalesQuoteForm() {...}
8 ...
9 private void initializeForm() {...}

10 private void onSendToApprovalButtonClick() {...}
11 private void savetoSalesQuoteBusinessObject() { ... }
12 ...}

Listing 1. Sales quotation form source code

Figure 2 shows the UI (layer 2) associated with the sales

quotation creation activity. An excerpt of the source code

associated with this UI is shown in Listing 1. Using this

UI, a sales representative can enter the customer information,

define the sales quotation, and specify the payment details.

An excerpt of the source code of the sales quotation business

object (layer 3), which holds the data and business logic of

the sales quotation, is shown in Listing 2. The sales quotation

module involves other UIs and business objects, as well as

classes that support the execution of the business process which

is not shown for brevity.

1 class SalesQuote
2 {
3 protected CustomerInfo customerInfo;
4 private List<ProductQuote> products;
5 protected String comment;
6 private double total;
7 protected double discount;
8 private double tax;
9 ...

10 public final SalesQuote readSalesQuote(...){...}
11 public final SalesQuote createSalesQuote(...){...}
12 private void saveSalesQuote(){...}
13 protected double calculateTotal(){...}
14 protected void calculateDiscount(double discount){...}
15 protected void sendToApproval(){...}
16 ...}

Listing 2. Sales quotation business object source code

Problem Analysis. Let us first consider the business object

layer. Each class in Java has two interfaces: a usage interface

and an extension interface. The usage interface allows a client

of the class to call all methods and access all attributes that

are not declared as private (including methods and attributes

declared as final). The extension interface, via subclassing,

allows the developer to override all methods that are not

declared as private or final (like calculateTotal()), and introduce

new methods and attributes. Moreover, the extension interface

allows the extending subclass to access all attributes and to call

all methods of the parent class that are not declared as private.

The subclass has read only access to the final attributes of the

parent class. In the following, we discuss several limitations of

the usage and extension interface in Java to express complex

extension interfaces for software systems.

The first problem is the lack of means to express and

constrain the extension types (M3). For example, it is not

possible to express that an extension developer is allowed to

add new methods to the class SalesQuote but he is not allowed

to add any new attributes (e.g., to prevent them from being

persisted in the database behind the business object). Further, it

is not possible to express that an extension developer is allowed

to add custom business logic only if the original method

is called by the overriding one. By allowing the extension

developer to override a method arbitrarily, this property cannot

be guaranteed (M6). While this second example can be realized

with other techniques (e.g., using the template method design

pattern) we argue that it is necessary to have declarative means

for the specification of extension possibilities. Such declarative

specification is beneficial for both the software provider and

the extension developer; The provider would be able to express

extension possibilities in a declarative way without thinking

about how to enforce them (e.g., through applying a design

pattern), whereas the extension developer will be able to directly

understand the extension interface of the class without going

through all its methods and related classes.

The second problem is the limitation of the usage interface to

express fine-grained overriding and access rights to the methods

and attributes of the extended class (M5). For example, the

modifier protected of the attribute discount gives the extension

developer full access (i.e., read and write) to that attribute. To

give the extension developer read only access to that attribute

one could declare it as final and protected. However, in that

case the class SalesQuote will not be allowed to modify the

discount value anymore. Without using, e.g., a protected getter

and a private setter method, there is no possibility to restrict

the access right of extension developers to the attributes of

the parent class. Moreover, by using getters and setters, the

extension possibilities are not expressed declaratively and the

focus is again shifted from what extension possibilities are

available to how these possibilities are enforced.

The third limitation is that Java provides a one-size-fits-all

extension interface (M1). It is not possible to have different

extension interfaces for different groups of extension developers,

which is often required. For instance one extension developer

group (e.g., external developers without partner status) can

be restricted to only perform validation of the sales quotation

by providing them with read only access to attributes as well

as the possibility to add some custom business logic before

the method saveSalesQuote(). Another group of extension

developers (e.g., extenders from partner companies) can be

allowed to perform validations and, in addition, update selected

attributes of the SalesQuote class. This second group will have

write access to some attributes of the SalesQuote in addition

to the extension possibilities given to the first group. A third

group (e.g., extenders at the software provider side who are

239239

building an industry-specific solution on top of the standard

application) can be allowed to realize advanced extensions that

go beyond simple validations such as extending the quotation

process to include a second approval step, e.g., for sales

quotations that exceed a predefined amount. In addition to

the extension possibilities given to the second group, this third

group will have the possibility to define new attributes for the

class SalesQuote and to add custom business logic after the

method sendToApproval().
There is no simple solution for this third limitation. One

solution could be to provide a variation of the proxy pattern,

in which different proxy classes are offered for each extension

developer group. The proxy provides access only to the methods

and attributes that are part of the extension interface. However,

such a realization is very complex. For example, one could

just consider the work required to provide three proxy classes

for the three extension developer groups mentioned above for

this example. The greater the number of extension possibilities

and constraints, the more effort and time will be needed for

implementing the extension interface.

Using the suggested solutions in the discussion has a lot

of disadvantages. First, the extension interface is realized

implicitly rather than explicitly. In other words, the technical

realization of the extension interface is coupled with the

functional code of the core software (e.g., the design pattern

suggested to realize the proxy classes to support multiple

groups of extension developers will have to be adhered to by

the functional code). The extensibility decisions and intents

taken by the application provider are lost. When the complexity

of an application increases, more code is required for realizing

an extension interface, which leads to maintainability problems.

It will be very difficult for the software provider (without,

e.g., comprehensive documentation) to find out the exact

methods, classes, and interfaces that comprise the extension

interface. Second, an extension developer will have a hard

time identifying the extension possibilities as they are not

expressed directly. Instead he will have to read documentation

and tutorials and to understand the whole provided APIs

to assess the feasibility of some extension scenario. This

gets even more difficult as the functional API of the class

and its extensibility API are mixed. Third, the design and

implementation complexity for the core software provider

increases and high developer expertise becomes necessary (e.g.,

with design patterns). The more complex the system and the

extensibility constraints, the more difficult the realization of

extension interfaces will be.

In the discussion above, we focused on the businss object

layer. However, modern software applications such as business

applications involve multiple layers and multiple artifacts on

these layers (e.g., UI models, business process models, code

artifacts, database tables, etc.). The extensibility problems

discussed above on the code level arise also on the other

layers. An extension can typically span several layers which

makes it important to support extensibility on all these layers.

For example, a software provider can make a certain database

table extensible by allowing the addition of new columns.

He can make a certain UI form extensible by allowing

extension developers to embed their custom UI elements at a

predefined location. He can also make a business process model

extensible by allowing the extension developer to add custom

activities. We argue that the extension possibilities have to be

expressed directly on the different layers of the application.

Most state-of-the-art approaches express these possibilities in

the implementation (i.e., on the code layer). As a result, an

extension developer cannot assess the feasibility of some UI

form extension or some business process extension without

diving deeply into the implementation and the provided APIs

on the code layer.

Furthermore, when supporting extensibility on different

layers, it is necessary to capture the dependencies (M2)

between the extension possibilities available on these layers.

For example, if the extension interface of the SalesQuote on

the UI layer allows an extension to bring in a new button

that triggers a particular function, and a text field to display

a new attribute, an extension developer has to also consider

the extension possibilities available on the code layer (i.e.,

the Java class SalesQuote) and to add a new attribute to that

class and implement the necessary logic. In addition, he has to

consider the extension possibilities available on the database

layer and to extend the table that stores the SalesQuote data. As

this example illustrates, an extension can span multiple layers

within an application. These inter-layer dependencies impose

constraints on the way extension possibilities are expressed

and also on the way an extension is developed.

III. XPOINTS

XPoints is a generic approach and a language for expressing

extension interfaces of multilayered applications. Using an

XPoints interface, a software provider can define and generate

an extension interface supporting the mechanisms (M1-M6) out-

lined in Section I. In an XPoints interface, the software provider

separately specifies the required extension possibilities (M1),

interdependencies (M2), supported extension types (M3), and

control constraints (M5) that are offered by the core software.

Several XPoints interfaces can be defined for a software system.

The XPoints compiler takes the defined XPoints interfaces and

the source code of the core software, and generates the required

system extension interface (i.e., extensibility framework and

code artifacts (M4, M6)) on the code level using advanced

techniques (e.g., design patterns, aspect oriented programming,

plug-ins, etc.). Using the XPoints interface, a software extender

can identify the available extension possibilities and use it as

a guide to identify the right coding elements generated by the

XPoints compiler to develop an extension.

Language Concepts. Within an XPoints extension interface,
several layers can be defined corresponding to the logical
layers of the base application. Each layer consists of one or

more extensible artifacts (M1) that are made available to an

extender. This concept declares the base code artifacts that are

extensible (e.g., classes, methods, components, etc.). Extension

possibilities within each artifact are declared through extension
points (M3, M6). Extension artifacts can be seen as containers

240240

of extension points. Each extension point has a type and a set

of parameters, which specify the base class artifacts that are

needed to generate the appropriate extension interface. With this

concept, we declare extension possibilities as first class entities

and hence we can explicitly express extension possibilities.

Listing 3 shows an example of a very simple extension

interface on the business object layer. The interface declares

the SalesQuote business object as an extensible artifact with

the extension point EXP1 of type afterMethodCall that allows

the extender to insert his custom logic after the execution of

the sendToApproval() method.

1 extensioninterface example{
2 layer BusinessObject{
3 extensibleartifact "com.sap.SalesQuote"{
4 afterMethodCall EXP1 ("void sendToApproval()") permission=per;
5

6 permissionset per{
7 attributepermission("double total",READ);
8 methodpermission("*",HIDDEN);}}}
9 }

Listing 3. XPoints interface example

Extension points can be further grouped within the same or

a different layer via extension point groups (M2). A group of

extension points simply implies that the extension possibilities

offered by these extension points are related. Groups can be

used in XPoints with or without control constraints. The control
constraints (M5) on extensible artifacts and extension points

restrict the access, visibility, and usage of the base application

artifacts by the extenders. The purpose of this concept is to

provide fine grained access control of the extensions to the

core application resources. The example in Listing 3 shows a

control constraint for EXP1 in the form of a permission set

per that allows the extender READ access to the total attribute
and hides all methods of the class SalesQuote from him.

The control constraints can also be defined on a group

(M2) to control how an extension realizing the member

extension points within a group should be implemented. In

some extension scenarios where an extension spans several

layers (e.g., UI and business object), a valid extension can

require the implementation of several extension points from

the same or multiple layers. Figure 3 summarizes the language

concepts.

ExtensionPointGroup

ExtensionInterface

ExtensionPoint

ControlConstraint

Layer

ExtensibleArtifact

1
1..*

10..*

1 1..*

1

0..*

1

0..*

1
0..*

1 1..*

1

0..*

Figure 3. Language concepts of XPoints

Example. In the following, we demonstrate how XPoints

can be applied in a simplified context of business applications

(see Section II). The concrete instantiation of the concepts is

described later in Section IV. We first consider two extension

scenarios for two kinds of extension developer groups, then

we show how XPoints can be used to specify the extension

interface to implement the requirements of the two scenarios.
Scenario 1: External Developer, Let us consider external

developers, who are allowed to perform some custom logic

before the SalesQuote business object is saved, but are not

allowed to modify any attribute. This group of extenders is also

allowed to read all attributes of the SalesQuote and display

a message in a label with the outcome of their logic in the

SalesQuotation form. Further, this group should not see any

method of the SalesQuote business object.
Listing 4 shows the specification of the extension interface

in XPoints for this extender group. This extension interface

spans two layers (business object and UI). Line 1 declares

the external developer extension interface. Line 3 declares

the business object and Line 12 declares the UI as the

containers of extensible artifacts. In this example, there are

two artifacts declared as being extensible; com.sap.SalesQuote
and com.sap.SalesQuoteForm (Line 4 and Line 13). Extension

possibilities are defined through extension points. Each exten-

sion point has a type, a unique identifier (e.g., EPBO1), a set

of parameters, and an optional reference to a permission set.
Line 5 shows the declaration of the extension point EPBO1

of type beforeMethodCall and Line 14 shows the extension

point EPUI1 of type allowUIComponent. The parameters of

EPBO1 declare the extension possibility before the method

saveSalesQuote(). The parameters of EPUI1 specify that the

extender can add a new component of type JLabel on the

parent component salesQuotePanel. The SalesQuote business

object artifact has a reference to the artifact permission set

default1 (Lines 7-10). This permission set declares that all

attributes should be available only in READ mode and methods

should be hidden to all extension points within the artifact.

The SalesQuoteForm UI artifact has a reference to the artifact

permission set default2 (Lines 16-19). This permission set

declares all attributes and methods to be hidden from the

extender.

1 extensioninterface externaldeveloper{
2

3 layer BusinessObject{
4 extensibleartifact "com.sap.SalesQuote" permission=default1{
5 beforeMethodCall EPBO1 ("void saveSalesQuote()");}
6

7 permissionset default1{
8 attributepermission("*",READ);
9 methodpermission("*",HIDDEN);

10 }}
11

12 layer UserInterface {
13 extensibleartifact "com.sap.SalesQuoteForm" permission=default2{
14 allowUIComponent EPUI1 ("JLabel","salesQuotePanel");}
15

16 permissionset default2 {
17 attributepermission ("*",HIDDEN);
18 methodpermission("*",HIDDEN);
19 }}
20

21 Group extensionScenario{(EPBO1,EPUI1),ExtendAll};}

Listing 4. Extension interface in XPoints for the external developer group

The last part of the interface (Line 21) declares a group called

extensionScenario that contains two extension points EPBO1

241241

and EPUI1. This implies that the two extension points are

related. At the end of the group declaration, an ExtendAll
constraint is declared, which means that a valid extension

should extend both extension points.

Scenario 2: Internal Developer. In this scenario we consider

a group of extenders, who are working on the provider side

to realize industry-specific solutions on top of the standard

application. These extenders are allowed to define extensions

that span multiple layers. More specifically these extenders

are allowed to extend the business process after the approval

step for example to realize a second approval step (c.f.

Section II). Thereby only some relevant business process

activities should be made visible while hiding the rest of

the process details. Further, these extenders are also allowed

to extend the SalesQuote business object with new attributes

and extend the business object logic after it has been sent for

approval. The extenders should also be allowed to read and

write values to the attributes products and customerInfo as

well as to call the method calculateTotal. Listing 5 shows the

XPoints implementation.

1 extensioninterface internaldeveloper{
2

3 layer BusinessObject {
4 extensibleartifact "com.sap.SalesQuote" permission=defview{
5 allowBOAttributes EPBO1 ("String",10);
6 afterMethodCall EPBO2 ("void sendToApproval()")permission=intdev;
7

8 permissionset intdev{
9 attributepermission ("products",READWRITE);

10 attributepermission ("customerInfo",READWRITE);
11 methodpermission ("calculateTotal",CALLABLE);
12 }}
13

14 permissionset defview {
15 attributepermission ("*",READ);
16 methodpermission("*",HIDDEN);
17 }}
18

19 layer UserInterface {
20 extensibleartifact "com.sap.SalesQuoteForm" permission=defview{
21 allowUIComponent EPUI1 ("JPanel","approvalPanel");
22 }
23

24 permissionset defview{
25 attributepermission("*",HIDDEN);
26 methodpermission("*",HIDDEN);
27 }}
28

29 layer BusinessProcess {
30 extensibleartifact "sales_quotation.bpmn" permission=defview {
31 afterActivity EPBP1 permission = view
32 ("Approve Sales Quote","com.sap.SQProcessing"
33 ,"void approveQuote()");
34

35 permissionset view{
36 activitypermission("Create Sales Quote",VISIBLE);
37 activitypermission("Approve Sales Quote",VISIBLE);
38 activitypermission("Send Sales Quote",VISIBLE);
39 }}
40

41 permissionset defview{
42 lanepermission("Sales Quotation Processing",HIDDEN);
43 }}
44

45 Group extensionScenario {(EPUI1,EPBP1,EPBO2),ExtendAll};}

Listing 5. Extension interface in XPoints for the internal developer group

In this extension interface, there are three layers defined

(business object, UI, and business process). In business object

layer (Lines 3-17), the SalesQuote business object is declared

as extensible. The permission set defview expresses that the

extender cannot call any method, and has read only access to

all attributes (Lines 14-17). There are two extension points

defined (Lines 5-6) EPBO1 and EPBO2, which declare two

extension possibilities to allow the addition of a maximum of

10 new attributes of type String (that will be persisted in the

database) and to extend the logic after the sendToApproval()
method. EPBO2 has a reference to permission set intdev (that

refines the permission set of the parent), which allows read /

write access to the attributes products and customerInfo, and
allows the method calculateTotal() to be called (Lines 8-12).

The next part of the interface (Lines 19-27) declares the

SalesQuoteForm as extensible with the allowUIComponent
extension possibility EPUI1 that allows the extender to add

a new panel in the sales quote approval panel. The artifact

permission set defview hides all methods and attributes of

the class from the extender. The following part (Lines 29-

43) defines the business process layer and the sales quotation

business process as an extensible artifact. The EPB1 extension

point declares the possibility of adding an activity after the sales

quote approval activity and the underlying class SQProcessing
that processes the logic of the activity through the method

approveQuote(). The defview permission set declares the whole

lane that contains the sales quotation business process as hidden

(Lines 41-43). The permission set view referenced by EPBP1

makes the main activities of the business process visible to the

extender.

Similarly to the previous scenario, the last part of the

interface (Line 45) declares a group called extensionScenario
that contains three extension points EPUI1, EPBP1, and EPBO2.

This requires then the developer to implement all extension

points.

IV. EXTENSION INTERFACE GENERATION

In the following, we will first describe the concrete instanti-

ation of the general language concepts described in Section III

for business applications consisting of the three logical layers

described in Section II, assuming that the underlying classes

are implemented in Java. The instantiated concepts only present

example constructs that can exist in business applications (i.e

the extensible artifacts, extension point types, etc.). However,

in other multilayered application domains, the concepts can be

instantiated accordingly to cover all possible constructs. Then,

we show how XPoints can be used to generate the extension

interface code.

a) Extensible Artifacts: The extensible artifacts supported

by the instantiation for business applications are Java business

object classes, Java Swing classes, and BPMN business process

models respectively.

b) Extension Points: On the business object layer, the fol-

lowing types are supported. AfterConstructor enables to define

extension-specific logic to be executed after the constructor

of a business object. BeforeMethodCall and AfterMethodCall
enable the definition of extension-specific logic before or after

a certain method is called. AfterBOAttributeChange enables to

define extension-specific logic to be executed after the value of

242242

a certain business object attribute changes. AllowNewBOLogic
enables the definition of new business logic, e.g., a new custom

method that is not associated with the core logic of the business

object. AllowBOAttributes enables the extension of a business

object with a maximum number of attributes with a certain

type.

On the UI layer, the following types are supported. be-
foreForm and afterForm enable to extend the form flow of

a certain application; it can be used to insert a custom UI

before or after a certain displayed UI. beforeUIEventHandler
and afterUIEventHandler enables to define custom logic to

be inserted before or after a certain event handler is called.

allowUIAttributes enables to extend the data model of a UI

with a maximum number of attributes of a certain type.

On the business process layer, more types are supported.

BeforeActivity, AfterActivity, and ParallelActivity declare the

possibility of extending an activity before, after, or parallel to

its execution. BeforeEvent and AfterEvent allow the extender

to insert his extension before or after an event. AfterDecision
defines the possibility of inserting an extension after a certain

decision result from a gateway. ExtensibleMessage allows the

extension of the message content or type used in the process

(data extension). ExtensibleDecision allows extending the result

set of a gateway.

c) Control Constraints: In the concrete instantiation,

control constraints are realized as permissionsets which restrict

the access, visibility, and usage rights of the base application

resources (i.e. supports the principle of least privilege [14]) to

the extender. The sets can be defined on the extensible artifact

level (i.e. container level) and / or on the extension point level.

Extension points inherit the permission set of their container.

An extension point that declares its own permission set, can

further override or refine the permission set of its container.

For the business object and UI layers, permission sets support

method and attribute permissions of the extensible artifact.

Attributes can be declared as either READ, WRITE, READ-
WRITE or HIDDEN. Methods can be declared as CALLABLE or
HIDDEN. Extensible artifacts that do not declare a permission

set get the default extension and usage interface offered by

Java. The permission sets defined on the business process layer

define the visibility of the business process elements (activity,

tasks, lanes, and data are currently supported). Each element

can be declared as HIDDEN or VISIBLE for an extender.

d) Group Control Constraints: The current instantiation

supports one control constraint, ExtendAll, requiring that a

valid extension should provide an extension for all extension

points within the group. For example, it can be required that an

extender extends the data model of the business object when

adding a new input text field for a UI.

Interface Generation. The code generated from an XPoints

interface consists of three main parts; a generated Java interface
acts as an entry point for the extension developer (M3, M4), a

proxy class that controls the access, visibility, and usage rights

of the methods and attributes of the base class (the proxy

class will be passed to the class of the extender implementing

the interface and will be initialized once an extension is

loaded), and an aspect code (implemented in AspectJ [15]),

which injects into the base application the necessary logic

for supporting the execution of the implemented extension

(i.e. the aspect code enriches the base class with methods and

data structures necessary to load and initialize an implemented

extension in a plug-in like fashion).

The general concepts of XPoints and the business application

extension are implemented as a domain specific language (DSL)

using XText [16] in Eclipse. To generate the interfaces, proxy

classes, and AspectJ programs as well as the validations of the

XPoints interface and references to the core application source

code, we have used XTend.

1 //*************Generated Interface**************
2

3 public interface ExtensionScenarioInterface{
4

5 //these are the methods the extender has to implement
6 public void init(EPBO1Proxy p1, EPUI1Proxy p2);
7 public void yourEPBO1Logic();
8 public JLabel yourEPUI1JLabel();
9 ...}

10

11 //**********Generated proxy classes*************
12

13 public class EPBO1Proxy{
14 private SalesQuote salesquote;
15 ...
16 //getter methods for the READ attributes
17 public CustomerInfo getCustomerInfo(){
18 return salesquote.getCustomerInfo(this);
19 }
20 public List<ProductQuote> getProductQuote(){...}
21 public String getComment(){...}
22 public double getDiscount(){...}
23 ...}
24

25 public class EPUI1Proxy{
26 //empty since no access has been granted
27 }
28

29 //************Generated Aspects*****************
30

31 public privileged aspect EPBO1Aspect {
32

33 /*Datastructure to hold
34 extensions of type ExtensionScenarioInterface*/
35 private ArrayList<ExtensionScenarioInterface>
36 SalesQuote.EPBO1Extensions;
37

38 //New method in SalesQuote class to add the extensions
39 private void SalesQuote.loadExtensionScenarioExtensions(){
40 ...
41 //loads the extensions with class loader
42 ...
43 extensions.init(this.getEPBO1Proxy(),this.getEPUI1Proxy());
44 EPBO1Extensions.add(extension);
45 ...}
46

47 //New method in SalesQuote class to perform
48 //EPBO1 extension sanity checks
49 private void SalesQuote.sanityChecksEPBO1(){...}
50

51 //New method in SalesQuote class to get the EPBO1 proxy
52 private EPBO1Proxy SalesQuote.getEPBO1Proxy(){
53 return new EPBO1Proxy(this);}
54

55 //New methods to support the proxy access to the base class
56 public CustomerInfo
57 SalesQuote.getCustomerInfo(EPBO1Proxy proxy){
58 //validate the proxy and return
59 if(isLegalProxy(proxy)) return this.customerInfo;
60 else return null;
61 }
62

63 public List<ProductQuote>
64 SalesQuote.getProducts(EPBO1Proxy proxy){...}
65 //Similarly for the rest of the attributes ...

243243

66

67 //load the extensions and
68 //perform sanity checks in constructor constructor
69 pointcut onload(): execution(* SalesQuote.new(..));
70 after(SalesQuote s): onload() && this(s){
71 s.loadExtensionScenarioExtensions();
72 s.sanityChecksEPBO1();}
73

74 //Pointcut and advice for running the EPBO1 extension
75 pointcut extension(): execution(* SalesQuote.saveSalesQuote(..));
76 before(SalesQuote s): extension() && this(s) {
77

78 if(s.EPBO1Extensions != null)
79 {
80 for(int i=0; i<s.EPBO1Extensions.size(); i++)
81 {
82 s.EPBO1Extensions.get(i).yourEPBO1Logic();
83 }
84 }}...}
85

86 public privileged aspect EPUI1Aspect {
87 ...
88 //Aspect body similar to the EPBO1Aspect
89 ...
90 //Pointcut and advice for running the EPUI1 extension
91 pointcut extension(): execution(* SalesQuoteForm.new(..));
92 after(SalesQuoteForm s): extension() && this(s) {
93 if(s.EPUI1Extensions != null)
94 {
95 for(int i=0; i<s.EPUI1Extensions.size(); i++)
96 {
97 JLabel j = s.EPUI1Extensions.get(i).yourEPUI1JLabel();
98 s.salesQuotePanel.add(j);
99 }

100 }}}...

Listing 6. Generated code framework for the external developer

For illustration, we schematically present the generated code

framework that realizes the extension interface of the software

for the external developer scenario (see Listing 4). Listing 6

shows the generated code framework. Lines 3-9 show the

generated interface. The interface includes two parts. The first

part is needed by the code framework to initialize the extension

(Line 6). Moreover, a reference to the corresponding proxy

classes is provided that will be used by the developer during

the implementation of the extension. The second part is the

extension point specific part: The extension developer has to

implement the method yourEPBO1Logic() for the extension

point EPBO1 and the method yourEPUI1JLabel() for the

extension point EPUI1.

The EPBO1 proxy class (Lines 13-23) contains the generated

list of getter methods required to provide a READ access to the

SalesQuote class attributes. Note that no setter methods have

been generated and no methods have been exposed as defined

in the permission set default1 (Listing 5, Lines 7-10). The

proxy class generated for EPUI1 is empty since all methods

and attributes were declared as hidden by the permission set

default2 (Listing 5, Lines 16-19). The last part of the code

framework generated is the aspect code for EPBO1 (Lines

31-84) and EPUI1 (86-100).

In the EPBO1 aspect, the first part (Lines 35-53) of the

aspect code are inter-type declarations, which enrich the base

class with data structures and methods necessary to load the

extensions implementing the ExtensionScenarioInterface in a

plug-in like fashion (the extensions of type ExtensionScenari-
oInterface are loaded with a class loader and they are passed

an instance of the proxy). The second part of the aspect code

(Lines 56-65) enriches the base class in a similar fashion with

methods to support the proxy class EPBO1Proxy calls. The last

part of the aspect (Lines 69-84) generates the advice that will

load the extension after the constructor (i.e. trigger the plug-in

load mechanism) of the SalesQuote business object, and the

saveSalesQuote() method pointcut within the base class where

the extension code will run as well as the advice that will

run the extension code. The EPUI1 aspect contains a similar

body to the EPBO1 aspect, however the generated pointcut and

advice (Lines 91-100) will add the JLabel component from

the extension to the salesQuotePanel.

V. DISCUSSION

To highlight the advantages of XPoints, we would like to

emphasize that in absence of XPoints, the code in Listing 6

would have to be manually written by the developer of the

base application in addition to the implementation of the

core application functionality. By comparing Listing 6 with

Listing 5, it becomes clear that XPoints significantly reduces

design complexity. The XPoints interface provides a declarative

mechanism for the implementation of extensibility, higher level

of abstractions, and separation of concerns. While the developer

could employ other programming patterns and techniques

rather than those we used for code generation, the resulting

application will not be of lower complexity. This is because

the developer will always have to adapt the functional code to

support extensibility.

The more distinct ways of extending a software system,

the more complicated it would be to mix functional code

with aspects, proxy classes, and interfaces that are concerned

with governing different extension scenarios. This will lead

to an overly complex design with maintainability problems

and loss of design intent. As the base application evolves

(e.g. more extension scenarios have to be supported), the base

application developers will have to implement the extensibility

enforcement code through new aspects, interfaces, and proxy

classes. The huge number of classes and aspects that have

to be created makes the technical realization of the extension

interface very hard. The technical realization complexity of

the extensibility possibilities is simplified by XPoints since it

automatically generates the required (boilerplate) code of the

extension interface and avoids polluting the core design with

infrastructure for simulating extension interfaces, and results in

a less complex design, better class maintainability, and better

preservation of the design intent for the software provider.

Providing the classes and interfaces to an extender without

proper documentation of the extension possibilities and usage

instructions can make the comprehension of the extension

possibilities and the identification of the coding artifacts to be

used (e.g. interfaces, proxy classes, etc.) very hard. The proxy

classes and interfaces provided to the extender in Listing 6

are not sufficient to be able to identify whether they are used

as a part of the core functionality of the software or they are

used for extensibility. On the other hand, an XPoints interface

declares extension points and their constraints as first class

entities and hence explicitly defines the extension possibilities.

244244

Using an XPoints interface as a contract, the developer can see

the layer specific extension possibilities and their dependencies

and can use it as a pointer to the low-level coding elements

that are required to realize an extension. For example, the

XPoints interfaces in Listing 5 can be used to identify the right

interfaces and proxy classes required to realize a particular

extension.

e) Limitations of the Approach: First, the extension

interface generation strategy depends on the implementation. In

the presented example implementation for business applications,

we used aspects, proxy classes, and Java interfaces for the gen-

eration of the extension interface. However, it is also possible

to use other techniques for the generation and enforcement

of extension interfaces. Second, if the core application code

changes, the old generated extension interfaces can become

invalid. To address this limitation, once the XPoints interface is

compiled, the XPoints compiler validates the XPoints interface

and the source code of the core application and will output

errors and warnings if there are any inconsistencies (e.g.

references to nonexistent classes or methods) in the interface

specification. Once the developer updates the XPoints interface,

the compiler will generate a new extension interface for the

application. Finally, the extension point types and semantics

depend on the implementation of XPoints. The presented

implementation of XPoints for business applications is only an

example instantiation of the concepts presented (i.e. we do not

claim that these are all the possible extension point constructs

for business applications). We are currently working on a more

generic instantiation for XPoints to support defining extension

interfaces for Java.

VI. RELATED WORK

Several works have proposed interfaces enabling modules

that are advisable while preserving modularity and controlling

internal implementation details. In this section we show how

XPoints relate and compare it with different language-level

state-of-the-art approaches.

Open modules [8] use pointcuts to expose advisable join

points of a particular module. The pointcuts are tightly

coupled with the definition of the module, and therefore it

is not possible to express crosscutting concerns across several

modules. In contrast to our approach, XPoints expresses the

extensibility possibilities separately from the base classes.

The base class developer has to only focus on defining what

extensibility possibilities exist, rather than writing pointcut

expressions. Moreover, it is possible to associate different

extension possibilities with extension point groups unlike open

modules.

Crosscutting interfaces (XPIs) [10] partially address the

limitations of open modules, by defining the crosscutting

interfaces independently of both the advised code and the

advice. XPIs use AspectJ pointcuts to expose the join points

in the base modules along with informally defined contracts

relying on design rules. Although the approach enhances the

decoupling of the extension possibilities from the base code

and to a certain extent shares our concept of separating the

extension possibilities from the base code, the rest of the

drawbacks previously described for open modules are not

addressed. Furthermore, the design rules contracts used in

XPIs are informally defined and no means are provided for

enforcing them. Unlike XPoints, the constraints defined on

the extensible artifacts, extension points, and extension point

groups are enforced by generating code. Furthermore, there is

no way to restrict the access to the base class resources to the

advice code.

Join point types [9] and join point interfaces (JPIs) [11]

introduce an additional layer to serve as an interface between

join points and advices. These approaches enrich pointcuts

with a “type” (syntactically in a method signature like fashion)

that specifies information passed between the base code and

the aspect. This is advantageous since the advice code can

only access the elements within the declared type as a specific

join point. XPoints share the idea of restricting access of an

extension to the base class resources. However, there are also

several limitations that are not addressed by these approaches.

The first limitation is that there is no fine grained access

control to the elements specified in the type. It is not possible

to express whether the extender has a read / write access to

certain attributes. In addition to that, there is no possibility

to restrict an advice code from calling certain methods. The

second limitation is that it is not possible to support multiple

extenders with different access rights to the base code resources.

Design patterns [17] are patterns in software design that aim

to solve reoccurring problems. Each pattern can either have a

creational, structural, or behavioral purpose. Patterns are usually

documented and described in terms of purpose, motivation,

structure, and relations to other patterns. In XPoints a developer

does not have to be an expert in design patterns to realize

the required extension interface. The XPoints compiler will

automatically complement the core software using the adequate

design patterns (if the compiler supports that technique as a

generation strategy) and generate the required code framework.

Plug-in systems abstract the data and functionalities of

an application through an application programming interface

that acts as hooks or extension points. Extenders can then

write applications and package them in the form of plug-ins

that conform to the API. The plug-in platform manages the

integration and execution of plug-in. An example of a plug-

in system is the OSGi [18] based Eclipse [19]. Each plug-in

contributes to a set of extension points and can provide a set

of extension points (a manifest file describes the extension

points it contributes to, dependencies to other plug-ins, and

extension points it provides). Extension points are dependent on

the interface definitions declared by the base plug-in developer.

These interface definitions indicate how the contributing plug-

in should be called and what data it can get. XPoints and

Eclipse share the idea of explicitly defining extension points as

well as their dependencies. However, in XPoints a developer

does not have to manually develop the interfaces as well as

handle them in the implementation of the core software to

support extensibility. XPoints generates the extension handling

245245

framework, classes, and interfaces automatically from the

XPoints interface specification.

In addition to the limitations pointed out in all of these

approaches, XPoints further supports defining extension possi-

bilities at different logical layers that have not been handled so

far by the current state-of-the-art approaches. The approaches

outlined above only focus on the code level, however XPoints

can further support other abstractions like UI and business

processes. XPoints also aims at simplifying the base code

developer task of designing for extensibility. The developer

simply has to specify the extension possibilities for each

extension scenario that exist without worrying much about

how the extension interface will be realized on the code level.

From that perspective, XPoints can be seen as introducing a

new layer above these approaches and can further make use

(depending on the implementation of the compiler) of these

approaches or other advanced techniques (e.g. like mixins [20],

virtual classes [21], difference based modules [22], traits [23]

etc.) for the realization of extension interfaces on the code

level.

VII. SUMMARY AND OUTLOOK

Defining and realizing extension interfaces for multilayered

applications is a very challenging task. In this paper we outlined

the limitations of state-of-the-art approaches in supporting ex-

tensibility for multilayered applications and introduced XPoints,

an approach and a language for addressing these limitations. An

XPoints extension interface defines the extension possibilities

in multilayered applications, controls the available resources

of the core application to the extension, and relates extension

possibilities from different layers. The interface is defined

separately from the core software resulting in less complex

code and better software maintainability and also enabling

multiple extension interfaces for different kinds of extenders to

co-exist. The compiler automatically generates the necessary

code framework to realize the extension interface on the code

level without requiring the core developer being an expert in

advanced programming techniques.

Currently, we are investigating a generic realization of

XPoints for Java as well as possibilities for generating the

extension interface using other approaches. We plan to apply

XPoints to other application domains, and to investigate

advanced topics like extension validation, monitoring, and

conflict detection.

ACKNOWLEDGEMENTS

This work was performed in the context of the Software-

Cluster project SINNODIUM (www.software-cluster.org). It

was funded by the German Federal Ministry of Education and

Research (BMBF) under grant no. “01IC12S01”. The authors

assume responsibility for the content.

REFERENCES

[1] M. Aly, A. Charfi, and M. Mezini, “On the extensibility requirements
of business applications,” in Proceedings of the 2012 workshop on Next
Generation Modularity Approaches for Requirements and Architecture,
ser. NEMARA’12. New York, NY, USA: ACM, 2012, pp. 1–6.

[2] M. Aly, A. Charfi, D. Wu, and M. Mezini, “Understanding multilayered
applications for building extensions,” in Proceedings of the 1st workshop
on Comprehension of complex systems, ser. CoCoS’13. New York, NY,
USA: ACM, 2013, pp. 1–6.

[3] J. Micallef, “Encapsulation, reusability, and extensibility in object-
oriented programming languages,” Journal of Object-Oriented Program-
ming, vol. 1, no. 1, pp. 12–36, 1988.

[4] G. Kiczales and J. Lamping, “Issues in the design and specification of
class libraries,” in conference proceedings on Object-oriented program-
ming systems, languages, and applications, ser. OOPSLA’92. New
York, NY, USA: ACM, 1992, pp. 435–451.

[5] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt, “Reuse contracts:
managing the evolution of reusable assets,” in Proceedings of the 11th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, ser. OOPSLA’96. New York, NY, USA:
ACM, 1996, pp. 268–285.

[6] M. Mezini, “Maintaining the consistency of class libraries during their
evolution,” in Proceedings of the 12th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, ser.
OOPSLA’97. New York, NY, USA: ACM, 1997, pp. 1–21.

[7] G. Kiczales and M. Mezini, “Aspect-oriented programming and modular
reasoning,” in Proceedings of the 27th international conference on
Software engineering, ser. ICSE ’05. New York, NY, USA: ACM,
2005, pp. 49–58.

[8] J. Aldrich, “Open modules: modular reasoning about advice,” in Proceed-
ings of the 19th European conference on Object-Oriented Programming,
ser. ECOOP’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 144–168.

[9] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner, “Types and modularity
for implicit invocation with implicit announcement,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 1, pp. 1:1–1:43, Jul. 2010.

[10] K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, M. Shonle,
and N. Tewari, “Modular aspect-oriented design with XPIs,” ACM Trans.
Softw. Eng. Methodol., vol. 20, no. 2, pp. 5:1–5:42, Sep. 2010.

[11] M. Inostroza, É. Tanter, and E. Bodden, “Modular reasoning with join
point interfaces,” Center for Advanced Security Research Darmstadt,
Tech. Rep. TUD-CS-2011-0272, 2011.

[12] J. Sutherland, “Business objects in corporate information systems,” ACM
Computing Surveys, vol. 27, pp. 274–276, June 1995.

[13] Object Management Group (OMG), “Business Process Model and
Notation (BPMN) Version 2.0,” Object Management Group (OMG),
Tech. Rep. formal/2011-01-03, January 2011. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0

[14] T. Mayfield, J. E. Roskos, S. R. Welke, J. M. Boone, and C. W. McDonald,
“Integrity in automated information systems,” National Security Agency,
Tech. Rep. 79-91, 1991, iDA Paper P-2316.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold, “An overview of AspectJ,” in ECOOP 2001 — Object-
Oriented Programming, ser. Lecture Notes in Computer Science, J. L.
Knudsen, Ed. Springer Berlin Heidelberg, 2001, vol. 2072, pp. 327–354.
[Online]. Available: http://dx.doi.org/10.1007/3-540-45337-7_18

[16] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM international
conference companion on Object oriented programming systems lan-
guages and applications companion, ser. SPLASH ’10. New York, NY,
USA: ACM, 2010, pp. 307–309.

[17] E. Gamma, Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[18] O. Alliance, OSGi service platform, release 3. IOS Press, Inc., 2003.
[19] S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and

P. McCarthy, The Java Developer’s Guide to Eclipse. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[20] G. Bracha and W. Cook, “Mixin-based inheritance,” ACM SIGPLAN
Notices, vol. 25, no. 10, pp. 303–311, Oct 1990.

[21] O. L. Madsen and B. Moller-Pedersen, “Virtual classes: a powerful
mechanism in object-oriented programming,” in Conference proceedings
on Object-oriented programming systems, languages and applications,
ser. OOPSLA’89. New York, NY, USA: ACM, 1989, pp. 397–406.

[22] Y. Ichisugi and A. Tanaka, “Difference-based modules: A class-
independent module mechanism,” in ECOOP’02, ser. LNCS, B. Mag-
nusson, Ed. Springer Berlin Heidelberg, 2006, vol. 2374, pp. 62–88.

[23] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black, “Traits: Composable
units of behaviour,” in ECOOP’03, ser. LNCS, L. Cardelli, Ed. Springer
Berlin Heidelberg, 2003, vol. 2743, pp. 248–274.

246246

